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z’ 

t modified pSane case penetrator length, ft 

R1 solution constants defined by Equation (A58) 

R1 solution constants defined by Equation (A60) 

R 1  solution constants defined by Equation (A591 
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I 
Mp modified-penetrator mass { M p  5 W, +w,- ) *  s l u g  I I 

P depth of penetration (crater radius), f t  I 

i h integer va€uet 0 ,  1, . 
I Q pressure, Ibf/rtz (sometimes in megabars) 
I 
~I 

I 

3 kinetic energy fraction (see p .  6 for definition) 

, 
1 

A constant in Hugoniot velocity relationship. see Equa%ion (19) ~ 

t 
u, 

o( 

0 
'd 

time, ~ e c  

particle ve€ocity, ftfsec 

magnitude of impact velocity, ft/eec 

impact veiociiy vector, ftfeec 

impact particle velocity ftfsec 

Cartesian coordinates €.t 

penetration-velocity relationship exponent ( P/D QC V" ) 

R1 so€utictn c=eaebra+ defhed by Eq~atbza (A.61) 

adiabatic exponent 

I 1 
I 
I 
1 
I 

&, 8, computational quantities defined by Equations (33) and (36)  
I 

1 ?f Hugoniot exponeat I 

I 
I 

;L/ parameter introduced in evaluating R1 (rree Equation fA43) ) 
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dynamic yield stress, lbf/ft2 or megabar 

time at which a partick becomes shocked when € SWL 0 ,  see 

Sup e re c r ipt s 

0 pre-impact 

Subscripts 
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1. INTRODUCTION 

1 .  Z Background 

In Part  I of this report, am infinite se r ies  technique for analyticafty des- 

cribing the hydrodynamic phase of the hypervelocity impact proces 

u p 4  and applied k, h cam af a one-dimensioaat impact 

G€ a riaid pS=eti-s4fir a id  = CGartant d i ixk  density. The applicaiton rf the 

od to  the more general case of spherical target flow with a compressible pene- 

t ra tor  and a variable shock density i s  treated herein. 

The purpose of the one-dimensional study is the demonstration of the feasi- 

bility of the ser ies  solution technique. As such, several important physical 

effects (geometric divergence of the flow-field, penetrator compressibility, 

d shock density variation) were not considered initially in order to concen 

trate on the fundamental aspects of the solution teehnir; 

el as possible. 

tended to include the effects necessary to  yield a physically detailed, analytical 

description of the hydrodynamic phase of hypervelocity impact. 

Having established the usefulness of the method, it is now er- 

f 2 Objectives 

The 0 Part= analysis are: 

~ 

on a mode€ which includes: 

a. spherical target flow 

b. penetrator compressibility 

c .  variable shock density 

2 .  A determination of the relationship between infinite target crater  depth 



and impact velocity based an the derived series sotu€ion. 

growth. 



I 2. ANALYSIS 

2 .1  Theoretical Model 

2.1.1 Physical Basis 

The as i s  for the the0 ica'f model to be 

by the impact cra te r  shown in Figure la .  The significant features of the im- 

p a d  (al-inum on copper) a r e  the hemispherical nature of the crater and the 

fairly uniform coating of the penetrator over the crater  surface, both of which 

a r e  consistent with the fluid dynamic picture of hypervelocity impact. 

pressure and temperature levels decay with time, strength becomes a major 

factor in controlling the flow of target and projectile material. 

flowing material ''freezes" due to  the onset of internal resistive forces which 

A s  the 

Eventually the 
I 

I 
limit gross rnacrascDrJic flow. 

All c ra te rs  a r e  not as symmetric and uniformly coated as that  pictured in 

I Figure la. In certain instances the penetrator may mix with the target crater  

material ,  a phenomena which occurs when copper impacts afuminwcb, a s  shown 

in Figure lb. 

from the relative differences in density between the penetra$er and target. 

This tatter effect may be related t o  a flow instability arisiag I 
In 

this i ular type o€ 

2.1 * 2 Physical Ideatization I 
2 . 1 . 2 . 1  Instant of Impact 

Based on the preceding considerations, the instant of impact i s  i d e a b e d  1 

3 
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I 
I 

I 

(la) Aluminum on Copper 

Fig. I .  Examples of typical hypervelocity impact craters. 

1 4 
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SYSTEM A T  IMPACT 

- Deformed Penetrator 

Impacted Target 

Uniform 
Radial Velocity 2' 

Target Shuck Front 

IDEALIZED SYSTEM JUST AFTER IMPACT 

Fig, 2 ,  The idealization of the penetrator-target system at the izxstant of impact. 



I hemispherical shells. 

sure within each sheli are uniform; their values are equal t o  those at the impacted 

target 'layer shock front, 

"he  particle velocity (which is purely radial) and pres- 

Application of tfie momentum and energy conservation laws ytetds unique 

values for the impacted target layer mass, W T ,  and the impact particle velocity 

which are consistent with the postulated flow-field. 

Figure 2,  conservation of momentum in the z direction requires that 

Thus, using the notation d 

I 
1 

tor of 1/2 on the right side of the equation a g from the f 

deformed penetrator and impacted target Ia3rer are flowing radially. 

t the 

Enr r g y  canse rvatton ne ce ssitate s that 

where 3 (defined as the "kinetic energy fraction") is the fraction of the initial 

or kinetic eaergy which appears as deformed penetrator a 

y** Eqnati be solved 

impacted target layer mass, and z1' , the impact particle velocity. Thus, 

4 8 i s  assumed independent of the penetrator kinetic energy. 

6 
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I 
I 
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I 

1 
I 

I 
,i r 

- 

I 
1 

I 
~ 

radius follows as I 

Since, for this model, there is no loss of target mass, the initial crakr 
I 

I 

(7G) 

or 

( ? E )  

It should be emphasized that the effects of penetrator compressibility and 

material properties at the instant of impact a r e  accounted for i n  this formulation. 

Thus, 8 can be obtained from a rigorous analysis of the one-dimensionai im- 

pact bPtween infinite slabs, one of the target material and one of the penetrator 

material. For example, for similar material impact, i3, 1 1  '2. With 8 cal- 

culated in the manner, Equations ( 5 ) ,  (a), and (7) give a reasonable representa- 

tion of the state of affairs existing at impact. 

2 

(For a one-dimensional impact, 

ould be perfectly rigorous. Physically, it would depict the sitnaticm 

existing at the instant that the penetrator shock reaches the baci €ace of 

the penetrator . 1 

2 . 1 . 2 . 2  After Impact 

A s  j u s t  shown, there is a unique impacted target layer mass, impact 

particle velocity, and initial crater radius associated with the postulated initial 

e instant of impad, the flow-field shown in 

to  that which would arise i f  a "rigid" hemispherical s 

as <modified-penetrate;) with a mass 

initial outer radius , and uniform radial velocity impacted a target with 

initial. crater radius (see Figure 3a). The modified-penetrator i s  "rigid" 

7 



1 Modif ie d - Pene t r at o r 

Uniform 
Radial Velocity, 

(3a) A T  IMPACT 

I_ Modified- Penetrator Initial Crater Radius 

----.-. ___- -/ 
Shocked Target Flow-Fi 

Target Shock Front 

Quie s cent Targe t  

(3b) AFTER IMPACT 

- Fig. 3 ,  €1 times aftctr-impact. 
1 

8 



in the sense that the initial particle velocity over the hemispherical impact 

- t- 
8 

surface is 2/ , the impact velocity of the modified-penetrator.* 

It is postulated that for all  succeeding t imes after impact the rnodified- 

penetrator acts as a deformable, hemispherical shelf piston which Is in con- - - - -- 
stant bearing contact with the target {see Figure 3b). Its  velocity distribution 

i s  always radial. Fo r  purposes of computing its equation of motion, the vel- 

ocity of the target-modified-penetrator hemispherical interface is taken to be 

that of the modified-penetrator center-of-mass. As discussed in Part I (see 

Section 3.4.2) this latter approximation should be of higher-order significance. 

2.2 Mathematical Formulation 

2.2.1 Fluid Dynamic Equations 

As io. the one-dimensional analysis, it is assumed that 

1 .  The flow is inviscid and adiabatic; real fluid effects, i . e , ,  viscosity and 

heat transport, a r e  absent except in the advancing target shock fronk. 

2. Strength effects a r e  negligible during the flow process. ** 
3. The adiabatic pressure-density relationship is given by 

For the assumed rical Row-Aefd, it is also c ient to a- 

grangian form of the &id dynamic equations. 

defined as  

The pa&icle parameter is now 

*In the rigid penetrator, one-dimen 
impact velo 

**Strength is considered, however, 

initial partic 
U (08 0 )  is equal to  

luating the final c ra te r  radius. 

1 



where yo and f ' * a r e  the undisturbed target density and in'tial radius of the 

particle ~ respectively. (Figure 4 illustrates the flow-field geometry notation. ) 

The Lagrangian form of the fluid dynamic equations appropriate for spherical 

3 flow is 

Energy: 

Equations (11) and (€2) differ from their one-dimensional counterparts (Equa- 

tion (30) and (31) of Part I) in the *,- factor which accounts for spherical di- 

vergence of the presrsute and velocity fields. 

2.2.2 Boundary and Initial Conditions 

2 . 2 . 2 .  i Initial Conditions 

From the idealization of Section 2 .1 ,  at the instant of impact the radius 

of the modified-penetratot, target crater ,  and shock front are  all equal to  a.  

The initial velocity of the ~i>odified-penetrator is the impact particle vclocky, Thur , 

2 . 2 . 2 . 2  Boundary Conditions 

Target - Modi f i ed- Pe ne t r a t  or Interface 

The flow is spherical; hence, only the z-component of the rnodified- 

pencttator momentum i s  different from zero. The rate of change of this 



Modified - Penetrator 
/- us 

/ 

L. Tar* at 

Fig. 4 .  The Lagrangian representation of the spherical flow-field. 



momentum is governed by the z-component of the pressure force acting at the 

t~I'G"t-n?odified-penctratcr interface. Thus, 

Target Shock Front 

The shock density is treated as a time varying quantity. From the 

experimentally derived shock velocity expression 

1 I w & * E  u ( , q t t =  i - c  
A 

and t h e  rigorous shock pressure relationship f *=poxr f l  , it follows tha t  

The form of the  corresponding shock density equation,;, =$if- [ + ( T - i f l { ,  
2 

does not allow for a series representation. A form which does yield a series 

expansLen and which i s  a good approximation t o  the  pressure-density variation 

along a ffugoniot curve 4* 8 is 

where is e adiabatic exponent y .* * It should 
phenomena. 
given particle during adiabatic expansion. 
density to the shock pressure as the shock €Font move 
**Hugoniot data for various metals is given in Refere 

ions (9) and (21) represent two distinct 
Equation (9) refers to the pressure-density relationship of a 

Equation (2 1 )  relates the  shock 
nto the t a r g e t .  



Equations f19), (20 ) .  and (21) are three equations f o r  the shock velocity, 

I 
i 
R -  

pres su re ,  and density which account €or the variable shock density. 

2.3 Method of Solution 

The solution of Equations (11), (12), and (13) subject to the initial and bound- 

ary coxdi%iuns speeifie by Equations ($4). f f5) ,  (is), (I?), (20) and (21) is pre- 

2 . 3 . 1  Series Expansions 

In complete analogy with the one-dimensional analysis, it is asswned that 

the flow-field distributions can be expanded in t e rms  of powers of the impact 

density ratio, € , defined as 

(22) € 5  Po z,, 
where p* is the density of the initial impacted target layer described in Sec- 

tion 2.1.  Thus, for a specified target material and penetrator mass we seek 

solutions of the form 

Shock Position: Rt t ,c )  = I R 
as0 

Modified-Penetrator Position: X(t,c) = Xn (t)  * 
**& 

Pres sure: 

Density: 



nto Equat 

2 . 3 . 2  Coefficient Differential Equations 

ons ( I I ) ,  (12)' and 

(13) yields a system of partial differential equations for the coefficients in the 

flow variable ser ies .  For the zeroeth and first-order coefficients we have 

Substitution of Equations (23), ( 2 6 ) ,  and (27) 

These equations are readily integrable. 

( 3 3 )  



where d(&)andq(aj  a re  functions of t o  be specified by the  boundary conditions. 

Higher order  terms can be calculated. However, experience with the one- 

dimensional solution indicates that the second-order contribution to a three 

term series is onlj. about 5% shortly after impact. Hence, for the spheric$ 

flow analysis a similar relationship between the magnitude of the first 3 term. 

is pomtubted, so that ~ l y  the first 2 series cuefficlsnts are evaluated. 
--E -* - -0. ‘As. 2.3.3, Flow-Field Solution 

~. 

2 3 . 3 . 1  Truncated Series Expansions 

Following the procedure developed for the one-dimensional analysis, tbe 

ser ies  coefficients given by Equations (31)  through (3b) are obtained by applying 

the initial and boundary conditions and solving for the functions of integration 

This procedure also yields 8, and R, , the first two shock potition seriet 

c oeff ic ients . 
T h e  radial location of a f luid particle at the target-modified-pene‘trator 

interface is equal to that of the penetrator, L e +  

W b j  + K t o , t ) ~  +.- = gatti + x, ( t )&  + ’. . I 
and, equating coefficients of like powers of €. 

- 

Hence, as for  the one-dimensional flow, the modified-penetrator position ser ies  

coefficients are derivable from those of the particle position series. 

~ 1 5- - 



t-- 

The detailed evaluation of the various ser ies  coefficients i s  g' iven in 

the Appendix. Table 1 presents the first two te rms  of the series expansions. 

A s  can be seen, to calculate the target flow-field €or a given penetrator im- 

pact velocity, V, and mass, Yrrp , one needs only to  specify the target 's  undis- 

turbed density, P o  adiabatic exponent, 8 Hugoniot exponent, , adiabatic 

bulk sonic velocity, c , and shock velocity constant, Id , and the impact pz- 
U 

ticle velocity-density ratio fc~ction 

in Subsection 2.3.3.2.) The secondary properties 3 K, 

and M3 are  related to the target properties through the curves of Figures 5, 

6 ,  and 7, respectively. 

cussed previously, from the one-dimensional impact of infinite slabs, one of 

the target material and one of the penetrator material. 

$!(c) . (The evn?.;ation of 2<'6) is G',sriissed 

andli 

The kinetic energy fraction, g , is calcutated,as dis- 

It is useful to compare the present results with those developed for the 

rigid penetrator, one-bimensional impact at  constant shack density. 

purpose, it is sufficient to restrict  the comparisons to the zeroeth order t e rms  

a s  the f i rs t  and higher order terms account for  the variation in the flow-field 

levels with impact velocity. 

For  this 

The basic characteristics of the flow proc tss ,  i . e . ,  

unt of geometric divergence and shock density variation, a re  reflected 

in the form of the leading term of the shock position series. . 

one -dimension 

instructive to  note that for explosive shock flows at constant shock density, t 

shock front motion varies with flow-field geometry as 

where 7% =3,  4, and 5 for one-dimensional, cylindrical, and spherical  f10W5, 

respectively. Fo r  one-dimensional flow with a constant shock density, Equa- 

tion (e l )  of Part f gives the leading te rm of the shock position ser ies  as 



. 

+ 



f 

3 

+b 

i 

1' c 
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t d 
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* 
(one-dimensional, constant shock density), (&) 

where the reduction of the exponent from 2/3(as predicted for one-dimensionai 

explosive shock flow) to  1/2 is due to the fad that the Part I analysis allows 

€or a continuous deposition of penetrator energy into the target flow-field as 

contrasted to the instantaneous deposition postulated for the explosive shock 

mode 1. 

In complete analogy with the reduction of exponent when comparing ont -  

dimenslor? a1 and spherical explosive shock flows, 8, for the present  spherical 

flow is** 

R, =,J 'CL$' ' '+  ct - ( J - - ~ ) Q  (spherical, variable shock (41) 
d e  os it y ) ; 

for early times, 

(sD-- a-rical, constant shock 
( 42) d e n s i M  

That is, tile exponent is reducer1 from ~ J Z  f o r  t h e p i a m  case ( ~ q u a t i o r i  (40) j to 

114 for the  corresponding early t ime spherical case. Since the density is rcla- 

tivclj-  constant during t h e  early part of t h e  impact process ,  Equation (42)  is also 

the constant shock dens i ty  s p h e r i c a l  flow solution. 
+ 

The effect of targpt shock density vari.*tion is given by the second term 

on the right side of Equation (41). As't irne  increases, this becomes the ma- 

+* %uP&,riL = rtw. 
ci 

*** The t e rm (1 - 
+It  should  also 'De noted t h a t  for corrcsponding spherical  f lows ,  the exponent 

of the present analysis is smal le r  than that corresponding t o  a n  explosive 
shock model, v iz . ,  1/4 coinpared t o  2 /  I in cornplctth analogy with thc  plane 
case results. 

)a serves t o  satisfy the initial condition R, "A. 



I 

-1 
I -  

- 

I- 

approaches the adiabatic bulk sonic velocitg. 

dimensional and constant shock density assumptions rFssults in a shock front 

equation which predicts sonic speed spherical flow at large times and constant 

Hence, the removal of the one- 

shock density spherical flow for early times. 

The f i rs t  order te rms  of Table 1 become approximate as 9300. These 

expressions a re  valid for values of 2 less than 100. 

essa ry  to obtain an accurate, closed form expression for R, and, hence, the 

other f i rs t  order coefficients. * 

This restriction i s  nec- 

A t  the instant of impact the retention of only the zeroeth and f i rs t  order 

t e rms  leads to deviations (which increase with € 

the flow-field properties. 

terms decay quite rapidly with time**, thus rendering the two te rm ser ies  

quite accurate over the major portion of the g rangP of physical interest. 

) from the impact values of 

However, the effect of the second and higher order 

2 . 3 . 3 . 2  Impact Particle Velocitv-Densitv Ratio Function 

In the irnpactpd targpt layer, the uniform part ic le  velocity and prcssure 

are given by (see Equations (1)  and (2)) 

* Th e evaluation of HI is fully discussed in Section A .  4 .  

** As illustrated by the three term Part  I analysis. 
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s o  that 

The target Hugoniot function can be introduced to provide a second relation- 

ship betvJeen impact pressure (i. e . ,  initial shock pressure) and impact den- 

sity ratio (i. e . ,  initial shock density), viz., 

#t 
Eliminating ffi)frorn Equations (45) and (46) yields 

Physically, an rS value of zero is not realizable a s  it corresponds to 

an infinite shock density and a corresponding infinite shock pressure and im- 

pact particle velocity. However, as discussed in Section 3 . 3 . 1  of Part I, we 

seek  series solutions to the differential equations for the range 0 < t;’ C_ 

recognizing that the differential equations and their solutions a re  not correct 

physical representations for E: =O. In precisely the  same manner,a 

i s  constructed from available Hugoniot data and the resulting curve extrapolated 

t o  zero. 

I ,  

F o r  € 2 0, the generated PrC) curve is a valid representation of the 

relationship between impact particle velocity and density ratio. Each target 

s its OWR unique curve which follows directly from its Hugoniot data 

through the application of Equation (47). 

The evaluation of the coefficients of the power ser ies  representation of 

VIE,) , i .  e. ,  

7 

follows directly f rom the curve itself. Thus, 

~ - ~ ~~ ~ ~ 

23 



anc 

At this point it is well to emphasize that the impact particle velocity, 

the aetual penetrafor impact velocity V, are related through Equation (5), 

The factor 8 12 accounts for the spherical flow-field and the penetrator com- 

pressibility. * For a given penetrator impact velocity, V,  the impact particle 

velocity, “J , follows from Equation (4); the corresponding impact density 

ratio,  , is obtained from the Re) curve specified by Equation (47). 

- * In the rigia penetrator, one-dimensional analysis, 2/ - V. 
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3 .  NUMERICAL CALCULATIONS 

The purpose of this section i s  to illustrate the application of the flow f ie ld  

se r i e s  equations by calculating the depth of penetration-impact velocity re- 

lationship for aluminum-aluminum impacts. The procedure presented is 

quite general and is not restricted to similar material impacts. 

calculational s'unpE€icatian offered by a similar material impact (within the 

framework of the present model) is that g , the kinetic energy fraction, is 

known t o  be 1 /'2; hence, the one-dimensional, infinite media impact calcula- 

The only 

tion need not be made. 

3 . 1  Material Properties 

The specification of the values of the material properties 

calculations i s  described in this section. 

Section 3-  1.5, 

A summary table 

From Equation (47). 

required for the 

s given in Sub- 

The Hugoniot c u m  for Aluminum, i,e., $&] is taken from Reference 6 and is 
I 

shown in Figure 8.  Hence, 

or 

25 
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This expression is presented in Figure 9.  The upper limit impact velocity of 

physical interest is taken to be 200,000 f t isec.  Since 2/ = V i 4  for similar 

material  impacts, the corresponding upper limit impact particle velocity, z/, 
i s  50,000 ft/sec. A smooth curve through the calculated values of 

5 0 , 0 0 0  €t/sec is extrapolated to 6 

up to 

=O to give 

z/o =5 144000 f t / s ec .  

The extrapolated portion of the curve is shown dotted in  Figure 9.  

The value of is obtained directly from the curve as (see Equation 4913) 

so that 

3.1.2 and I f  

A s  can be seen in Figure 8, the Hugoniot curve can be well represented 

= C O t U 5 7 ' A N l  

values greater than U. 37 (corresponding to  rfl > 50,000 fftsec). for  E 

Hugoniot exponent, K , is given by 

The adiabatic exponent, $ , varies significantly more than ?I' with c f .  

Reference to Figure 8 shows the change of with initial state. Thus, for 
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initial pressures greater than 40 megabars, the compressed target expands 

adiabatically from i ts  initial shocked state as if it were a g a s .  That is 3' 

is about 1. b.  

s u r e  is considerably smaller, e . g . ,  levels of about 1 megabar o r  less ,  does 

$he adiabatic exponent approach the larger values normally associated with 

metallic state adiabatic expansion, say 5 o r  b,  or thereabouts. 

It is an interesting fact that  only when the initial shock pres- 

I For  the purposes of the present calculation, an average value of '2( is 

utilized. 

pressure is 10 megabars. The corresponding value of T is 3.07 (see Figure 8). 

A t  an 6 2 0.37 (corresponding to 2/ =50 ,000  f t lsec) ,  the initial shock 

For  2/ = l o ,  000 f t  sec,the initial shock pressure is about 1 megabar and the 

corresponding value of ?f is 6 . 6  

range of impact particle velocities is 

Hence the average value of a over the 

t 

x =  gr3** 

3.1.3 A andC 

F r o m  Reference 7 ,  the appropriate values of and f for EttumiawIl are 

3.1 .4  Secondary Properties: f, w, KF, <$- o.vi -6, 

From Figure 5 for C,/% ~17,400/200,000 = 0.087, and 2 = 1.37, 
I 

f T i . ?  

*It should bc noted that the anal)-sis is ca r r i ed  out  under t h e  assumption that 2( 
is constant. The resul ts  of the  plane caae study indicate t h a t  indeed the shock 
motion is relatively insensitive t o  values oE However, for slightly increased 
accuracy, the value of ?€ can be allowed to vary with 4 in making the numerical 
f low-f i d d  c a k u  -~ 

~- - 

--2 9 
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From Figure 6 ,  for ( K - X  ) , /R(  = ( 0 . 2 7 )  (4 .8 ) (4 .53)  = 0.0124, 

y =  Q).L=iZ 

6; -- .Lot: 

Lastly, from Figure 7 ,  4 K~/(12-3 y )=I  .3u, so that, since 8 = 0.5, 
U 

K3 = 3. "i 

From Equxtion (A43), 

or 

3 . 1 . 5  Summary of Material Proper ty  Data 

The values of the material properties necessary for calculating 2x1-A1 

mpacts a re  given in Table 2. 

TABLE 2 - LL4TERJAL PROPERTY DAT_I: F O R  P.LUllIh:U~,\:-ALU~SIINC_lil 
IMPACTS 

Primary Pmperties Secondary P r o p  rties 

$ = 0 . 5  f =  2.9 

y o  = 5.23 slug/ft3 3 "0.012 

= ZOO,  000 ft//sec KL = 1 . 0 4  

% = -089,000 ft/sec 

'rr = 4.53 

K3 = 3.56 

$1 = 4.28 



3.2 Solution Constants 

Using the data of Table 2 ,  the solution constants given by Equations (A571 

through (Ao3) a re  readily calculated. 

in Table 3. 

The numerical values a re  summarized 

TABLE 3 - SOLUTION CONSTANTS FUR ALUMINUM-ALURtlfNtfh? IMPACTS 

JJ-= -1 .03  

In order to evaluate depth of penetration, 

is  required. In accordance with the discuss 

cra te r  dcpth is def ined  as t h e  position of t hc  

p 
-L = -1 .34  

3.3 Depth of Penetration - Impact Velocity Relationship 

a cratering-cessation criterion 

on of Section 4 . 3  of Part f ,  the 

shock front (definedas 1%- ) 
# 

at the Instant the the shock pressure falls below o-* 

Hence, Ri is calculated as follows: 

the dynamic yield s t ress .  

1. For a given impact velocity, V, and corresponding , /?-=k 1 -h  Ci and 
0 .  

k' L- k K : , the transient shock position and velocity histories, respectively, are 

calculated. * 
4 

2. From Equation ( 2 0 ) ,  the velocity {defined as ) corresponding to Q- i s  

*The generalized timet 9 I f +- is used as the time variable for convenience. 
'3 



calculated. 

3 .  The time (defined as 9 )corresponding to R, is  obtained from the tran- 
c 

sient shock velocity history calculated in Step 1. 

4. The shock radius at the time 9, , which is by definition the depth of 

penetration according to the stated cratering-cessation criterion, follows di- 

rectly from the transient shock position history of Step I .  

5 .  This sequency of steps i s  repeated for several values of 6 to determine 

the general relationship between depth of penetration and impact velocity. 

3 . 3 . 1  Transient Shock Position and Velocity Histories 

Using the solution constants of Table 2, A i s  calculated as a function of g 

by means of Equations ( A 6 4 )  and (A56) .  

R , / J ,  follows directly from Equation (A31). 

The leading t e rm of the shock ser ies ,  

The resultant shock front mation 

for any € is simply 

Figure 10 shows R(g) for 6 values of ao:o,35,0.4, 0.45, &Oh* 

The corresponding shock velocity, obtained by differentiating Equations (A3 1) 

and (k64) and noting that 

*The corresponding impact particle velocities, 7/ , follow directly from Fig- 
ure  9. The impact velocities, V, a r e  just 4 t imes these values. Thus, 

€ z 1 
0.3 5 54,000 2 Ib ,  000 
0.40 43,000 172,000 
0.45 34,000 136,000 
0.40  15,000 bo, 000 
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is shown in  Figure f f  for the various values of & 

that for values of g less than 10, the mi) term approximation fo r  /? deterior- 

ates for the e values chosen. 

accurately describe the early time behavior. 

fect o f t h e  higher order terms dies out rapidly* and it is  possible to  draw a 

smooth carve though the vaLues of if for g > 10 to the true impact; shock 

. It should be remarked 

That isimore than 2 te rms  are  necessary to 

Fortunately, however, the ef- 

veiociiy obtained from Equdiien (i9). FOP g vahies <lese tc; i[l[l, +ha e..- u & A % . A , e . b ” ‘  % . . - 1 - & + ; * ~ l  

approximations used in deriving /?I in closed form break down. 

values of g greater than 50, the R curves a re  extrapolated rather than calcu- 

Hence for 
r 

lated. AS mentioned previously, and a s  will be shown, the cratering process 

i s  terminated before g reaches 100, so that this small extrapolation introduces 

no uncertainty into the calculation. 

Figure 12 illustrates Equation (20) in the low pressure and velocity range. 

To be specific. consider the case where the dynamic yield stress is 0.01 Mb. 
L 

The corresponding shock velocity i s  17,700 f t / sec .  

the corresponding cratering times and shock radii a r e  

From Figures1 1 and 10, 

a s  given in Table 4.  

Lastly, since depth of penetration data a re  normally presented as P/D, 

ter radius and D is the equivalent spherical diameter af where 

the penetrator, Equatioa(7b) is used to relate a to D of the penetrator. Thus, 

so that 

or fo r  f‘:j;, and g = 0.5; 

& = 1. i L’. 
* Based on the results of the one-dimensional analysis. 
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Hence, 

These values are also given in Table 4, 

TABLE 4 - NORMALIZED DEPTH OF PENETRATION FOR VARIOUS 
IMPACT VELOCITIES (We = - 3 A C f  - '( c/ 

. €  
0 - 3 5  

172,000 b 6  3 . 1 0  3 . 7 2  0.40  

0 .45  

0. bo 

136,000 0 1  2 .70  3 . 2 4  

6 0 , 0 0 0  49 1 .80  2.16 

Figure 13 shows the relationship between P/D and V for C Y "  values of 0.01 

and 0 . 1  Mb. As expected, the higher yield stress yields the lower depth of 

pentration. However, a 10-fold change in CT' , does not affect a carrespond- 

ing large change in depth of penetration. This follows from the shock velocity- 

pressure relationship; that is,at low pressure levels, a small change in f? 
gives rise to a large relative change in pressure level. Hence, even though 

the relative change in pressure may be large, the corresponding velocity (and 

hence and R ,  difference i s  qu' ite small. 
d c  

re  13 follow a power law relationship 
d E 9 v 

0 
where  4 =O, 56 ? 0.03. This agrees very closely with the 0.58 value quotcd 

by W a l s h  based on his extensive machine computations. 
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4. CONCLUSIONS 
> 

1. T h e  ser ies  solution technique provides a useful means for describing 

the hydrodynamic phase flow-field during a hypervelocity impact without the 

necessity of extensive computer codes and calculations, 

2. Using simple Hugoniot data to provide the necessary material property 

data, it is possible to easily calcuiate the target's spherical fiow-fieid whire 

accounting for 

a. continuous energy deposition 

b. variable shock density 

c penetrator compressibility, 

3. Based on the calculation presented and it5 epecific cratering-cessation 

~ r i t e r i o n ~ t h e  penetration-velocity exponent is 0.56 1: 0.03. It appears that 

simple penetrator energy scaling (a= 2/3) o r  momentum scaling (d = l f 3 )  is 

not appropriate and that both quantities affect the c ra te r  size (of course, along 

with target strength and other properties i. e. # K s C and P" ). 
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APPENDIX 

The derivation of the zeroeth and first-order series coefficient. is pre- 

sented herein. 

A .  1 Evaluation of yb (*) 

A strongly non-linear second-order differential equation fur Ya is obtained 

by solving three equations relating 8 ( 0  , $ 1, l,, , and 

alytical solution for 

. A siil-iple zii- 

is  not possible and a usefu l  approximation is obtained 

based on a numerical solution of the differential equation, 

From Equation (32) evaluated at the shock front, i .  e . ,  5% = W 

In complete analogy with the one-dimensional analysis, it is convenient to con- 

sider M g a s  €+€I. Then, from Equation (IO), 

= p" ( nb-a3)* 
3 

The pressure shock condition, Equation (201, yields 

o r  

A 1  
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Hence I 

Two additional equations between To , & , and 8 (0, z! are obtained from 

Thus, the target-modified-penetrator interface and shock velocity conditions. 

from Equation (IS), 

so that, equating coefficients of like powers of € 

or 

The shock velocity condition, Equation (Is), requires that 

Since Equation (A9) must be true for all values of 6 , it follows that 

and, applying the initial conditions implied by Equation (141, i . e . ,  
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Equations (Ab) and ( A 8 )  lead to a second differential equation in and Ro,viz., 

Substitution of either Equation (A1 1 a) or (A 1 1b) into the preceding expression 

leads to  a non-linear, sccond-order differential equation in either or TS . 
In both cases the resulting differential equation is mathematically formidable and 

does not readily yield an anaiytical solution. fQ A n  analytical approximation for 

is obtained from a tedious numerical solution of the exact, high€, nou-linear 

differcntial t Lcjuation 

F igu re  2'1 illustrates the numer:caf solution ( A  =1.25, 2 =20,000 ft/stc, 

=0.04, and ji = O .  01 ft) and the analytical approximat;on 

J 

Equation ( A 1 4 )  is precisely that which would result if the shock density is 

and (20)  a re  replaced by 

p =  ( \ -  

assumed constant. That is, if the shock expressions given by Equations (19) 

c i  I? 

f LI i L j  
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the shock conditions utilized in the Part I analysis, the differential equation 

for YU i s  given by 

ro 

The solution, subject to the initial conditions 

. r, = % 

is 

Equation (A13) reduces to ( A l f )  whenA =1 and C =O* 

The approximation given by Equation (A14) does not reflect the effect of the 

target material properties and C on . However, analogous cateulations . 

for the one-dimensional case with a compressible penetrator and a variable shock 

density yield an analytical solution for xo  , the leading te rm of the particle po- 

sition ser ies ,  which can be used to ascertain the significance of d andc/K. It 

is found that ~P/L** is relatively insensitive to variations in these p a m e t e r s  

(see Figure A2).  Furthermore, the case where ,g = f  .25 and C/% ’D.04 l ies 

approximately in the middle of the spread due to the large variations in A and 
~~ ~ 

For the spherical flow case,  the difference between f o r a  = I .  25 andc;/r,=O. 04 

* In both derivations, the te rm (J$ - p’23 ~ 

** In the one-dimensional rigid penetrator analysis, L is defined as f m p  /#,?e 

where b!p f “,+/’g, 

)is neglected relative to P6r,2/3 

(see part I ) .  When the penetrator is considered compressible, L 5 rJip,&pc 
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and "/a f o r i  = f  andciK =O (this corresponds to the constant shock density case) 

i s  smaller than the t f r r e  sI)fnding diffr.rpnnce for  t h e  on?-dirntnsional s z s t  so  

thht the overall spread due t o  theA 5,'~ variation is also smaller in  the spherical 

case.  

relatively small effect of A andC/i/r. on X/k and the even smaller spread €or the 

spherical case, the expression for & given by Equation (414) is assumed valid 

Hencr, based on the one-dimensional calculations which illustrate the 

in sI,ilei-;cai fluiii Over L L -  L u r  I---^ L a i i g c  iiiA ~ i i ~  C,!K of P F ~ C ~ ~ C L ? ?  i n t ~ r e s t ,  t .  e . ,  (1 ,-..e q g )  
Y 

varies bptween (1,O. 01 5 )  and (2 , @. 10). It should be emphasized tha t  rvcn though 

n thP expression for r, does not cvntain and C , the shoch t e rm,  

by Equation (-4llb) varies m a r k e d l y  w;t?i  these parameters. 

Higher order  accuracy in the Y, approximation can be obtained at 

R ,  , given 

h e  expense 

of analytical simplicity. However, based on the previous one-dimensional analy- 

s i s  and this part of the spherical development, i t  is apparent that a less simple 

representation for Ys would lead to mathematical canipliccttions w?iich rx-ou€d re- 

s t r i c t  an analytical development through the f i rs t  0rdt.r series terrr-s.  

Equation 

Thus ,  

(A14) represents a compromise between analytical esactnrss and com- 

plexity \vi.hich adequately depicts the Zeadlng term of the pzrticle position ser ies  

over the t imes of physical interest, i . e . ,  g 6 100. Further,  the leaditlg tefm 

of the shock position ser ies  (Equation (A ltb) ) comprises 2 6  and C J  , so that 

any iaacearagy in V, is even less significant in the term. 

A .  2 Evaluation of #?.'2,,S 

Substitution of Equation ( A 8 )  into Equation (32)  yields 

CI 
*TLe range of is between 1 and 2 

Yence, e / %  may range from about 0.015 t u  0.10, 

. The bulk sonic veloc i ty ,  c ,  is of t e or- 
d e r  of 15,000 to 25,300 ft/sec , w h i l e  Ud is of thc o r d c r  of 250,000 to  10 6 ft/set. 

~ ~ 
~ ~ ~~ ~ ~ ~ 

A7 
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so that, by means of Equation (A14), 

Using Equations (7a) and (e), this expression can be put in the form 
-- c______-_ 

where 

A .  3 Evaluation of A (a. 2 j 

The leading density coefficient follows directly from Equation ( 3 3 )  once 

&*)is known. This function is derived in precisely the same manner as de- 

tailed i n  Part I ,  wi th  the exception that now the shoc:i d e n s i t y  is allowed to 

vary. Thus, 

where r(*) is defined as the time at which the shock front reaches particle nt 

From Equation (A5). 
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D'( 7' ) is obtained as fallows. 
*' c 

Substituting Equations (22) and (45) into the right side of Eqcation (23) yields 

or 

. I -  r -  

Taking t i i c .  l i tu i t  of Equation (-325) a s L  '5 8 ,  it follows that 

Combining Equations (AZO), ( A 2 2 )  and (AZ?), there results 

( A x ; )  



h (4). To evaluate Equation (A29) it is simpler to work in terms of f7 and 3 )  
Thus, from Equations ( A l l b )  and (A14), the term in brackets is I 

I 
Again from Equation (Al ib )  and the definition of g, 

Hence, Equation (A21) can be written as 

Lastly, from the definition of h, Equation (A19), 

so that 

a n d ,  

i 
*Note, hfg) is analagous to 9vt ( 7 ). Thus,  gfh) is defined as the generalized time 

( 8 )  at which the shock front reaches particle h = 12-3% 
with 6 S O ,  

for an impact 

.... 



is then substituted into Equation (A30) to obtain the desired function of h and I 

thus ‘m . 

Equation (A32) is shown plotted in Figure (A3) for the two bounding c 
I 

( A ,  C/% ). 

mates ~3/’behaviar for moderate values of g.*  Further,  since Equation (A30) 

As can be seen, the curves differ f rom each other but each approxi- 

- 
must be raised to the 

the order  of 0.1,any deviation from 2 
power (see Equation (A291 ), which is generally of 

i/f behavior is minimized. For  example, 

if the expression given by Equation (A30) were off by as much a s  a factor of 2** 

the resultant e r r o r  in e(%t)as given by Equation (A29) would by only 7%.  Hence. 

it is possible to  represent g(h) simply as 

I 

I 
I 

without introducing any significant e r r o r  into the analysis. The factor 9 varies 

with ( d , C & ) a s  illustrated in Figure 5 .  The values of 3 for  the two limiting 

cases  follows directly from the approximating straight lines depicted in Figure A3. 

Intermediate value curves are approximated in the same manner and correspond- 

. For s m a n  88 e o  4c. $’{‘‘ f is  for i s  suggested by Equations (A31) an 
z?h g3Y4. For large g, R,/zd;g, and h d g3. d%if,’ h ranges from g3 4 to 
g 371 - behavior as g increases. 
f a r  the range of g of interest, 
4 i s  a function of and c/z;, . 

nee, f is never truly a constant. However, 
a good representation of h(g). Of course, 

**A deviation of this magnitude could occur only at g values of 100 or  greater 
and at the extreme of the,.&,I&range. For most substances and for g values 
up to 100, the deviations a r e  generally much less. 
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From Equations (A29), (A28), (A30), and (-31, it follows that 

Hence, combining Equations (33) , (A 18) and (A34) , 

A .  4 Evaluation of ( 315, e j 

Reference to Equation (34) shows that once 6 (d, $)=.@j(see Equation (38b) ) 

The procedure for evaluating ifi is identi- 
I 

i s  specified, U,l# i ;  i s  determinate. 

cal to that for yo . 

From the target-modified-penetrator interface condition, Equation (A?),  and 

Equation fA8), a second expression for E ( L ~ , S )  is 

Another expression relating f ; ,  and f; 

evaluated as 6 -9 0 .  

follows from the shock velocity condition 

Thus, from Equation (A9) 

r v 

A13 
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so that 

i3* 
Equations (A36), (A37), and (A38)  provide two simultaneous differential 

equations for R/ and A . 
?-- I -  - - - l -  T i  i t  

BeZore discussing their solution, the evaluation of 
1 

A l l C C g A a L a  I 1 ,  12, ~ i i d  1; is zeijiriL<a. 

I 
A .  4 . 1 .  Evaluating the Integrals 

I The three integrals each require the calculation of 

P,P0k3 
( h d h  * 

$% -33  j/ Arab 

i 
t 

Since i s  independent of -fi and pQ m,$ is separable in Wand 

I integration of Equation (A39) is, from Equation (A35), 

I 



il 
For arbi t rary A,c/%, 3 and &- this expression is not readily integrable in 

b- k closed form. However, the te rm raised to the - power is insendtiye to 
& U  

variations in and c/73 (which determine 4 ) and can be represented ac- 

curately by 

where KL and 2, vary only with 3 . Figure A4 shows the variation of 

with h for a wide range of A C,,ya values. 

in _8,c/ZT,causes little spread in the curves which are well represented by Kz 1.1 
The varia  tion of 

e* 

As can be seen, the large variation - 2' 

Kr and z/ with r*2- is shown in Figure 6 .  

With this simplification, the integral of Equation (A40) follows as 

where 
( A 4 3 )  

The other operations involved-in 11, 12, and Q are straightforward.* T h e  re- 

sults are  

3 To ca r ry  out the integrations, it is expedient to change the variable of inte- 
gration from rn to h. In so doing, rn ( 7 )  is replaced by h - (  8 ), where the 
approximation (see Equation (A33) ) 

is used. 
/, (2 )  = hL'#,a:j = 3 '15 
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where 

i 

i i . 4 . 2  Solving for rC; i E t  

Substituting f o r  R ,  by means of Equation {,438) yields a differential equation 

for x, : 

Substituting for  KO and V;_ and its derivatives (see Equations ( A f O )  and ( A 1 4 )  ), 

and using the in tegra l  expre~sions, Equations (A44), ( A 4 5 ) ,  and (A&), this 

equation reduces t o  

('A Y8) 



and dividing by 

t 
If the coefficient of xi is proportional to g, Equation (A5i )  takes the form 

of the eqttidimensitd linear equation or Cauchy's equation and is readif 
~ 

is plotted as a function ofsg €or the limi#ng c a s e s  of ,..d 4 G. Hencet it is pos- 

sible to replace the multiplier of x, bp4 Kf g without introducing any significant 
8 
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Fig .  A5. The linear approximatioa used ' 
to simplify t h e  X: differential 

- ~~ 



error into the anafysis over the range of g of physical interest. 

Thus, 

or 

( A  c3) r 2 - 3 %  ’ 
‘ 3  1 

K3 = 
L’ i 

c 
where the variation of Ks with C/?;is showu in Figure 7 .  

I 

With the preceding simplification, the differential equation becomes 

a form which readily yields an analytical solution, 

boundary conditions (see Equations (14) and (14) )) 

Thus, for the appropriate 

the solution of Equation (A54) is 

where the constants Ut, and the Zi ‘5 and the ,/ j are de- r, e,/ G A *  

fined as follows: 

A20 



f AS&&) 

- 3  - 
5 dl 

- 3  -- 
3- 

( A  a ? d j  - 6. s-. 

2. i- 
22 4- 0 . 2 s  - 

Y 

A 3. A&- - 
d 

L, z 

A2 1 



and 

f?, follows directly from Equations (A38) and (A46) as, since R, ( 0 



A. 4 . 3  Calculating Vi (3rl.f) 

Using Equations (A42) ,  (A35), and (A39),  the  expression for F ( m , t )  3 

Equation (341, reduces to 

---- I-' ----- 

where A, (t) is given by Equation (A56). 

A. 5 Evaluation of 8 ( , X  i+kj 
- ~~ 

T h i s  coefficient comprises two t e r m s  (see Equation (35) ). 

Equation ( A 3 6 ) ,  

From 

where IF are given by Equations (A44) and (A45). The second term of 

J-I  
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